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Groningen, The Netherlands 
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Abstract. In this paper we consider the mode decomposition of the electromagnetic field 
connected with a sphere of conductivity crl, and dielectric and magnetic permeabilities €1 

and gl respectively. The sphere is embedded in an infinite medium, characterised by the 
constants U*, Q, and I.(*. The continuity requirements of the field across the surface of the 
sphere lead to a certain set of so called natural modes, which can be calculated explicitly if 
the radial part of the electric field strength inside the sphere equals zero. The completeness 
of the radial parts of these modes, which is a set of spherical Bessel functions, is sometimes 
erroneously deduced from Sturm-Liouville theory. This theory however cannot be used to 
show the completeness because the continuity conditions of the field lead to a boundary 
value problem with a boundary condition which explicitly depends on the eigenvalue. The 
completeness of this set of functions, which is necessary to solve an initial value problem, 
will be shown. The set of functions will even be shown to be overcomplete. The connection 
of this problem with many other similar problems occurring in mathematical physics, as 
well as the physical consequences of the overcompleteness, will be discussed. 

1. Introduction 

Many boundary value problems in theoretical physics are special cases of Sturm- 
Liouville (SL) theory from which the possibility of expanding an ‘arbitrary’ function 
into a set of modes satisfying a linear differential equation with homogeneous linear 
boundary conditions is deduced (Courant and Hilbert 1966). However ordinary SL 

theory only applies to boundary value problems, requiring that a linear combination 
of the field and its normal derivative at a boundary be equal to zero, whereas in 
physics one often has to deal with continuity problems. These problems are connected 
with the continuity conditions of a field across a boundary and lead usually to a 
‘boundary’ condition which explicitly contains the eigenvalue (equation (2.11) of this 
paper). The explicit occurrence of an eigenvalue in the boundary condition(s) is not 
incorporated in classical SL theory and profoundly affects the results of this theory. For 
instance, a set of natural modes satisfying a linear differential equation and such a 
‘boundary’ condition can be overcomplete, whereas the eigenvalues usually have a 
non-vanishing imaginary part. Both phenomena do not occur in SL theory (Courant 
and Hilbert 1966). The imaginary part of the eigenvalues leads to damped vibrations, 
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1816 B J Hoenders 

so that the total amount of radiated energy is finite (Bremmer 1949, and Bateman 
1955). 

An example of such a continuity problem is the calculation of the electromagnetic 
field inside and outside a sphere with radius a and conductivity VI, dielectric and 
magnetic permeabilities c1 and p l ,  embedded in an infinite medium characterised by 
( ~ 2 ,  €2, and p2, where VI, c l , .  . . , p2 are constants. The quantities which according to 
electromagnetic theory are continuous across the boundary between the sphere and 
the medium are the tangential components of the electric and magnetic field vectors 
A x E and A x H. This leads to a set of natural modes and a transcendental equation 
for the allowed values of the frequency. Assuming the completeness of the set of 
natural modes, and in particular a set of spherical Bessel functions, Stratton (1941) 
solves the following initial value problem. Determine the electromagnetic field inside 
the sphere for all values of t > 0 if the radial part of the magnetic field vector inside the 
sphere is given at t = O  and the radial part of the electric field vector vanishes 
identically. (See $ 2 of this paper for explicit calculations.) 

Stratton states that the completeness of this set of spherical Bessel functions 
follows from the theory of Fourier-Bessel series (Watson 1966) which is just a special 
case of SL theory. But, this statement is, unfortunately, not valid because the ‘boun- 
dary’ condition which is derived from the continuity condition, explicitly depends 
upon the eigenvalue. (The set of modes is even shown to be linearly dependent!) In 
this paper we will obtain a proof for the completeness of this set of functions, together 
with an expansion formula. 

The completeness problem considered in this paper, which in the first instance 
looks rather special, arises in many different branches of physics if one solves initial 
value or scattering problems. Moreover, several sets of natural modes and the 
completeness problems generated by them have been known for a long time. We will 
conclude this introduction with several examples of sets of natural modes and show 
their usefullness for solving initial value or scattering problems. The related 
completeness problems will be formulated as well. 

For instance, the set of modes considered in this paper also arises in connection 
with the theory of scattering of a plane wave by a sphere (Mie scattering), i.e. the 
numerators of the amplitudes of this type of scattered field are equivalent to the 
‘boundary’ condition of this paper (Born and Wolf 1975, § 13.5, see especially 
Bromwich 1919), and a partial fraction Cauchy-type expansion of this field inside the 
sphere if the conductivities are zero leads to an infinite series of natural modes. (The 
details of this calculation can be found in the book by Nussenzveig (1972, Q 5 . 7 ~ )  who 
derived a partial fraction expansion of the S matrix.) The calculation of a scattered 
field arising from the scattering of an arbitrary incoming wave by a sphere as a series 
expansion of the natural modes of a sphere was indicated by Bateman (1955). 
Bremmer (1949) suggested that a scattering theory in terms of natural modes would 
lead to a promising alternative with respect to ordinary scattering theory, 

Moreover, as early as 1884, Thomson (1884), and somewhat later Love (1904) 
used the natural modes of the electromagnetic field outside a perfectly conducting 
sphere to determine the field outside this sphere if at t = 0 a charge distribution is 
given at the surface of the sphere (see especially Beck and Nussenzveig 1960). 

A well known example of a set of natural modes is generated by the theory of 
potential scattering (Siegert 1939, Humblet and Rosenfeld 196 1, Pattanayak 1976). 
This set arises in connection with the calculation of the field scattered by a central 
potential with finite support. The ‘boundary’ condition of this problem is in fact 
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derived from the continuity requirements of the field and its normal derivative across 
the boundary between the potential and free space. The eigenfrequencies k, are 
complex and lead to damped vibrations (Humblet and Rosenfeld 1961). 

The natural modes of this problem are the solutions of a linear homogeneous 
integral equation arising in the theory of potential scattering: 

if 

exp(ik(r - r’l) 2m U(r’)  = 7 V ( r ‘ )  
A G(r, r’; k)  = lr-r’l ’ 

and V ( r )  denotes the potential and T the support of V. Equation (1.1) shows that the 
natural modes c$,, ( r )  are solutions of the time-independent Schrodinger equation, 
subject to the non-local boundary condition 

which has to be satisfied everywhere inside the boundary U of the support of V 
(Pattanayak 1976). 

The scattering problem can be solved if it can be shown that the natural modes 
satisfy the completeness relation 

The relation (1.4) has been established by Hoenders (1977)’ and the solution of the 
integral equation of potential scattering reads as 

(It is readily observed from (1.4) that (1.5) is a solution of the time-independent 
Schrodinger equation.) The wavefunction outside T is obtained taking the limit’r + U 

in equation (1.5) and solving the exterior boundary value problem of the Helmholtz 
equation, subject to Sommerfeld’s radiation condition. This type of analysis has been 
conjectured by More and Gerjuoy (1973). A similar theory has been developed for 
the theory of electromagnetic scattering (Hoenders 1977). 

A general definition of the natural modes of an electromagnetic or scalar field 
arising in connection with scattering problems has been given by Wolf and Pattanayak 
(1976, see also Agarwal 1973 for many applications). They defined the natural modes 
for a body of any prescribed constitutive relations bounded by a closed surface S as 
the set of well behaved outgoing solutions of Maxwell’s equations, which obey the 
continuity conditions at the boundary S.  (A similar definition can be formulated for 
the natural modes of potential scattering.) Wolf and Pattanayak (1976) showed that 
the solutions of Maxwell’s equation satisfying this definition are the eigenfunctions of 
the homogeneous part of the integro-differential equations of electromagnetic scat- 
tering with eigenvalues k = k,, or, solutions to Maxwell’s equations satisfying a non- 
local boundary condition. These two formulations are equivalent. 
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The connection between this definition and the sets of natural modes generated by 
Mie scattering has been established by Agarwal, whereas Pattanayak (1976) showed 
that this general definition leads to the natural modes of potential scattering. 

We end this short survey on the occurrence of sets of natural modes in physics with 
an example due to Morse and Feshbach (1953). They considered an initial value 
problem connected with a string with one non-rigid support. This support leads to a 
continuity condition similar to equation (2.26), rather than to a boundary condition, 
and the solution of this problem is obtained in terms of a series expansion of natural 
modes. (Their solution unfortunately contains an error because the calculation of the 
residues of the integral occurring above equation (11.1.27) is wrong. The correct 
solution of the problem can be obtained by either the methods of this paper or from an 
expansion due to Geppert (1924, Q 3, example 2). Similar mechanical problems are 
considered by Lamb (1900) (see Nussenzveig 1972, 0 4.4, and Beck and Nussenzveig 
1960). 

The examples of Love (1904), Thomson (1 884), Lamb (1 900), Nussenzveig 
(1972), Pattanayak (1976), Humblet and Rosenfeld (1961), Morse and Feshbach 
(1953), Beck and Nussenzveig (1960), Bateman (1955) and Agarwal (1973), show 
that sets of natural modes occur everywhere in physics and are the rule rather than the 
exception. A systematic analysis of their properties is therefore very desirable. 
General results have been obtained by Hoenders (1977) who developed a Hilbert- 
Schmidt type of theory, leading to a bilinear expansion in terms of the natural modes 
of the resolvent kernel connected with the integral equations of electromagnetic and 
potential scattering theory (see equation (1.2)). 

The initial value problem considered by Stratton could be solved using this 
Hilbert-Schmidt type of theory taking the temporal Laplace transform of the Maxwell 
equations. Though this procedure would lead to an indirect proof of the completeness 
of the set of natural modes we prefer to give an entirely different and direct proof of 
the desired completeness. The reason for doing this is that the techniques used in this 
proof are very general and can be applied to other expansion problems with boundary 
conditions which are different from the ordinary Sturm-Liouville boundary conditions 
or the continuity conditions to be imposed on the solutions of the Maxwell equations 
or the Schrodinger equation. Examples of such problems are the problems considered 
by Morse and Feshbach (1953) and Lamb (1900), mentioned above. 

The completeness proof is obtained using a very elegant and beautiful method 
employing the calculus of residues used for the first time by Cauchy (1827 a, b, c), and 
developed by numerous other authors (e.g. PoincarC 1894, Birkhoff 1908, Hilb 1918, 
Tamarkine 1927, Geppert 1924, 1925, Titchmarsh 1970). 

This technique, applied to sL-type problems with boundary conditions depending 
upon the eigenvalue, may provide a tool with which a large class of similar problems 
can be handled. 

2. Statement of the problem 

Suppose a sphere of radius a and characterised electrically by the constant k:= 
e1p1w2 + iulw1w is embedded in an infinite homogeneous medium characterised by 
the parameter k: = e2p2w2 + iuzpzw, where el, p1 and u1 are the dielectric 
permeability, the magnetic permeability, and conductivity of the sphere respectively, 
e2, p2, u2, the corresponding quantities for the infinite surrounding medium, and w is 
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the temporal frequency of a Fourier component of the field. At time t = 0 let the radial 
component H?(R,  8,4) of the magnetic field inside the sphere be given by some 
arbitrary function f (R ,  e,#) which, for mathematical convenience, is supposed to be 
of bounded variation. Then, if we consider those modes for which the radial 
component of the electric field inside the medium equals zero, i.e. we only consider 
transverse electric waves, the field, both inside and outside the sphere, is determined 
uniquely by f (R ,  8, +), and can be calculated using the natural modes of the sphere 
(Stratton 1941, 3 9.22). Following Stratton's treatment we have the following set of 
modes inside the medium: 

i a  
sin 8 a# E$) = -- - Ym,,jn(klR) e-'"', 

a 
ae E$) =- YmJn ( k  R ) e-'"', 

The prime denotes differentiation with respect to ( k l R ) ,  j n  is the spherical Bessel 
function of order n, and Y,, the spherical harmonic. The field in the external region 
R > a is obtained by replacing k l  by k2, and j n  by hc) ,  the spherical Hankel function 
of order n of the first kind. In order to satisfy the boundary conditions that n x H and 
n x E are continuous, the frequency w can only take a discrete set of values wsn which 
have to be determined from the equation 

(2 .2a)  2 2 2 
P s n  = ( ~ s n ~ 2 ~ ~ 2  + ~ W ~ ~ C L Z U Z ) ~  , 

where the numbers psn are the roots of the following transcendental equation: 

(2.2b) 

(2.3) 

where the prime denotes differentiation with respect to the argument. 
Assuming fhat the set of functions 

N 
a (2.4) 0 < R a, k,, = -pori, { i n  ( k s 3  11; 

is complete, Stratton shows how the field can be constructed from the modes. 

value f ( R ,  e,#)  at t = 0 of H!) into a series of spherical harmonics: 
The solution of his initial value problem is obtained from the expansion of the 

m + m  
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if 

anm(R)=/ dnf(R, 0, 4)ymn(@, 4). 

On expanding the functions Ranm(R) into the set of functions 

n 

Ran- (R = Cnm (5 )in (kmR 1, 
E 

we obtain from equations (2 .14 ,  (2.5), (2.6) and (2.7): 

H?(R, e, 4, t )  

if 

(2.9) 

However, from (2.26) we observe that we cannot prove the completeness of the set of 
functions (2.4) by showing that they satisfy an ordinary Sturm-Liouville expansion 
problem as stated by Stratton, because the Sturm-Liouville approach would be to 
show the completeness of the set of functions which are regular near the origin and 
satisfy the differential equation 

d2 d 
( dR dR 
R ' y +  2R-+ (p'N'a-'R' - n' )  (2.10) 

and the boundary condition 

where 

Ab)= Pb), (2.12) 

d 
B(p)=-@h")(p) ) .  (2.13) 

However, in contrast to ordinary Sturm-Liouville theory the coefficients of the boun- 
dary condition (2.11) depend explicitly upon the eigenvalue p, which circumstance 
completely changes the applicability of the results of ordinary Sturm-Liouville theory. 
In particular the property of orthogonality of eigenfunctions will no longer be valid 
(see Morse and Feshbach 1953). As already remarked, this kind of boundary condi- 
tion is typical for electromagnetic theory, where the 'boundary' conditions are 
continuity conditions. 

dP 

3. Calculational procedure 

For simplicity we will first consider the case of zero conductivities cl and U'. The 
proof for the completeness of the modes if c1 and c2 are not zero will be postponed till 
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0 4. The reason for doing this is that for zero conductivities the quantity N equals 
( E I ~ ~ ) " ~ ( E Z ~ Z ) - " ~  and is therefore a constant independent of p. Let 

ILbt n 1 = P [CL2(NPin (NP ))'h ',"(P> - CL l(h '," (PIP )'in (NP 11. (3.1) 

We will assume that the roots of the equation +b(p, n ) =  0 are simple. A proof of this 
conjecture is rather difficult and is connected with the multiplicity of the poles of the S 
matrix (Nussenzveig 1972, § 5.7a). 

The spherical Bessel and Hankel functions can be written as (Stratton 1941, 0 7.4, 
Magnus and Oberhettinger 1966): 

j,,b)=p-'(sin b - i n . r r )  (-l>m(n ++, 2m)(2p)-2m+cosb-+n.rr) 
m=O 

m = O  I 

d "sinp 
= (-l)"p"(-) -, 

PdP P 
( 3 . 2 ~ )  

(3.2b) 

( 3 . 2 ~ )  

where 
n 

(A, n)=2-'"n! n [4A2-(2k-1)2] 

(A, 0)= 1. 

(Hankel's symbol), 
k = l  

(3.2d) 

Equations ( 3 . 2 ~ )  to ( 3 . 2 ~ )  show the existence of complex numbers aj and bj such that: 
2 n c Z  2mi-2 

j = O  j = O  
cos(pN) 1 ajp-' +sin(pN) 1 bjp-'). (3.3) 

Let 
2n+2 2n+2 

j = O  j = O  
q5@, n) = exp(ip)( - sin(pN) 1 ajp-' + cos(pN) 1 bjp-'), (3.4) 

and suppose that the function f(7) is defined on the interval [0, a], satisfying Dirich- 
let's conditions: e.g. f(7) is of bounded variation on [0, a ] .  Let 

R 

fib, R)=p2q5b, n)inbRNa-') 72inbTNa-'lf(7) d7, (3.5a) 

(3.5b) 
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. R  

(3.5c) 

and 

f 4 ( p ,  R )  = p2jn(pRNu-') la T 2 y , , ( p N u - ' T ) f ( T )  d7. (3.5d) 

Consider the following two contour integrals for large values of the positive number c: 

R 

which will be evaluated with the theorem of residues and also by using the asymptotic 
behaviour of the integrand on the contour. The contour is chosen such that it passes 
between two successive zeros of the denominator. 

The second terms in the integrands of equations (3.6) and (3.7) are entire functions 
of p and therefore give no contribution to the contour integrals. However, the 
insertion of these functions makes the asymptotic evaluation of the contour integrals 
feasible. 

From the theorem of residues we obtain (see the remark following (3.1)): 

where the summation has to be extended over all the singularities of the integrands of 
equations (3.6) and (3.7) lying inside the contour. The point p = 0 gives no contribu- 
tion to the integrals (3.6) and (3.7) because though +(p, n ) =  O(p-2n-2) the fuilction 
p2jn(pNu-1R)j,(pNu-')= O(p2n+2) near p = 0. We will also evaluate the left-hand 
side of (3.8) in the limit c + 0;) by using the asymptotic behaviour of the integrands. To 
this end we have to study the asymptotics of the factors of the integrands. Firstly we 
study 4G0, n)$b,  n). 

From equations (3.3) and (3.4) we obtain for large values of c:  

+ i + O(exp(2ipW, if 0 s arg p S 7r (3.9a) 4(p, n) -={ 
$(p, n)  - i + O(exp(- 2ipN), if T s a r g  p s 27r (3.9b) 

Combination of equations (3.2c), (3.5a) to (3 .54 ,  ( 3 . 9 ~ )  and (3.9b) leads to: 

if O s  arg p s T (3.10a) 
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if ~ a a r g p s 2 ~  

if T s a r g p s n  

= -ip2j,(pNa-'R) 

if ~ s a r g ~ 6 2 ~ .  

In order to carry the asymptotics further we have to study the integrals 

c j , ( p N ~ - ' ~ ) f ( ~ )  d r  and h ' , t ' ( p N U - l T ) f ( T )  d7. 

(3.10b) 

( 3 . 1 0 ~ )  

(3.10d) 

We will first derive a useful identity. From the recurrence relation for spherical Bessel 
functions (Stratton 1941, 0 7.4) 

d 
+.P "+lZn (P 1) = P " + l Z n - l b  19 

dP 
(3.11) 

where z , (p)  denotes any spherical Bessel function of order n we obtain 

(3.12) 

if a and b are real numbers, and provided that all the integrals exist. Equation (3.12) is 
valid if IpI # 0,O s arg p s 2~ and will be very useful for the calculation of the asymp- 
totic behaviour of the integrals mentioned previously. Because the function f ( r )  is of 
bounded variation and therefore only discontinuous at a finite number of points in the 
interval 0 s r s a there exist to every positive number E intervals S ( E )  such that: 

I f (R)  -f(d < E ,  if O C R - S G T S R ,  R G T c R + S  < a,  (3.13) 

i.e. the property (3.13) allows f ( ~ )  to be discontinuous at T = R. Suppose that we only 
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consider those values of IpI = c for which c > (R -a)-', then: 
C-1 R - 8  R 

~ ~ j , , ( p N U - ' ~ ) f ( 7 )  d7 = 1 + L-l + JR-8 T2 in (pNa-1T) f (T )  dT* (3.14) 

The first term of the power series expansion of thk entire function jn(x) is proportional 
to xn, therefore 

= O ( P - ~  6' yn+' dy) = if O S  arg p s 27r, lpI = c. (3.15) 

Using equations ( 3 . 2 ~ )  we obtain: 
R-8  

T ~ ~ , , ( ~ N u - ' T ) ~ ( T )  dT1 = O{exp[lcNu-'(R - 6) sin(arg p ) ] ] } .  I Ll (3.16) 

(3.19b) 

According to the second mean value theorem there exists numbers 5' and 5" such that: 
R 

(f(T)-f(R))T'in(pNU-'T) d7 

E' E" 

= ( f ~  - 6) - f ( ~  ))( J ~ ( 7 ,  P I  d7 + i I,, Q(7, P )  d7), (3.20) 
R-S 

if R - S < ( ' < R ,  R - S < 5'' < R. 

Combination of (3.12), (3.13) and (3.20) leads to 
R 

( ~ ( T ) - ~ ( R ) ) T ' ~ , , ( ~ N U - ' T )  dT1 = O [ E P - ~  exp(pNu-'R)], (3.21) 
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and combination of (3.15), (3.16), (3.17), (3.18) and (3.21) leads to 

= O[EP-' exp(Na-'R)], if 0 s  a r g p s 2 r  

Similarly we obtain: 11; T2h',"(pNa-'.r)f(T)dT+ f(R)-h?il(pNu-'R)I R 'a 
PN 

= O[EP-~ exp(ipNa-'R)], i fOCargps I r ,  

R 2 a  
and 

(pNa-'T)f (7) dT + f (R )- h L2il (pNa-'R) 1 
PN 

= O[ep-' exp(ipNa-'R)] if r =s arg p s 2 ~ .  

(3.23) 

(3.24) 

Let 8 be an arbitrarily small fixed positive number. We then obtain for the 0 terms at 
the right-hand sides of equations ( 3 . 1 0 ~ )  to (3.10d) 

8 s a r g  p s r-6 
0 s arg 0 s 8, 

(3.25a) - - O(P-9, 1 Ob-'), r - 8 s  arg p s r, 
R 

O(pZi,(pNa-'R) I, T2j,(pNa-'7)f(T) dT. exp(-2ipN)) 

r +8s  arg p s 21r -S; 
2r - 8s arg p c 2r, 

(3.253) - O b - ' ) ,  - ( Ob-'), r s argp s r + 8 

O(pZj,,(pNa-'R) J U  T2j,,(pNa-'T)f(T) dT. exp(2ipN)) 
R 

8s arg p s r - 8, 
O s  arg p s 8, 

- - O(P-'>> - ( 3 . 2 5 ~ )  I O b  -9, r- S S  arg p 5 r. 

) O(p'j,(pNa-'R) la T2j,(pNa-'T)f(7) dT. exp(-2ipN) 
R 

r + 8s arg p s 21r - S, 
21r - 8 s arg p c 21r, (3.25d) 

Hence, combination of equations ( 3 . 2 ~ )  to (3.2c), (3.10a) to (3.10d) and (3.22) to 
(3.25d) yields: 

- - O(P-'>? 

{ Ob-'), r s arg p s ~r + 8 

if 8 s  arg p s r -6 1r+8s arg p s 2 r  - 8, 
i f  - 8 s a r g p S + S ; I r - S s a r g p s I r + S :  (3.26) - - 
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Combination of (3.6), (3.7), and (3.26) leads to: 

Therefore, because the numbers 8 and E can be chosen arbitrarily small, letting c tend 
to infinity we obtain from equation (3.27): 

a3  
lim I1(R, c)+lz(R, c)=-jf(R),  
C’OS N 

and combination of (3.8) and (3.28) leads to the desired expansion formula: 

(3.28) 

(3.29) 

4. Completeness of the set of modes (2.4) if the conductivities are non-zero 

The completeness of the modes (2.4) has been shown hitherto with the assumption 
that both the sphere and the surrounding medium are non-conductive. In this section 
we will prove the completeness of the modes (2.4) if the conductivities are not zero. 

The choice between the plus and minus sign occurring in equation (4.2) is totally 
immaterial for the following calculation, and therefore, just to make the function 
k 2 ( k l )  definite, we choose the positive sign. 

Let the points bi, j = 1 , 2 ,  . . . , denote the branch points of the function k2(kl) 
considered as a function of the complex variable k l .  We will now consider contour 
integrals similar to the one introduced in 9 3 but replace the contour lkll = c by the 
contour drawn in figure 1. For the appropriate cut in the complex k l  plane in order to 
make the function k2(kl) single valued we take a curve connecting the points 
bl, bz, . . . , which is drawn in figure 1 as a broken line. We will evaluate the integral 

where c1 is drawn in figure 1.  Using the techniques of the previous section we obtain: 

(4.4) 
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Figure 1.The contour c1 consists of a large circle with radius c and centre at the origin and 
a closed curve L. The domain bounded by L contains the branch points b, but no zero of 
$(kip n ) .  

and 

(4.5) 

where the summation has to be taken over all the singularities of $ ( k l ,  n )  lying inside 
the domain D. 

We will try to express the integral over L occurring on the left-hand side of 
equation (4.4) into a series of modes (2.4). The function 

is analytic within the domain E, drawn in figure 2. 

poles lying outside E, such that for all numbers k l  E E (Saks and Zygmund 1952) 
Therefore, for every number E > O  there exists a rational function Q(f)(kl) with 

Ih(k1, n)-Q")(kl)l<E. (4.7) 
If the functions H?)(kl) ,  1 = 1 , 2 , .  . . , denote the principal parts of the functions 
Q(f ) (k l )  around the poles k = kr, then 

is an analytic function in the complex kl  plane. 

Figure 2. The domain E is bounded by the curves B1 and B2 and does not contain a zero 
of $(ki ,  n) .  
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Therefore, recalling that no singularities of (t,b(kl, n))-' are situated within the 
contour L, combination of equations (4.6), (4.7) and (4.8) yields: 

Let M be an arbitrary positive number and suppose that the infinite set of positive 
numbers Ai, j = 1 ,2 ,  . . . , is bounded by M :  

Ai <M,  j =  1 , 2 , .  . . . (4.10) 

The set of functions {cos(AiJk)} can be shown to be complete with respect to the class 
of functions which can be approximated arbitrarily closely by a polynomial in powers 
of k in a bounded domain D (see Lewin 1962, Hoenders and Ferwerda 1974) taking 
O(v)= cos(AiJk). The expansion of such a function into this set converges uniformly. 

Let the contour L' enclose the contour L in such a way that the singular points of 
the function H f ' ( k ) ,  which are situated outside L, are also situated outside L'. The 
function HI'' ( k )  is analytic within the simply connected domain bounded by L' and, 
by Runge's theorem, can therefore be approximated arbitrarily closely and uniformly 
for all values of k situated on L and in the domain bounded by L by a polynomial in 
powers of k (Saks and Zygmund 1972). Because the set of functions {cos(AiJk)} is 
complete with respect to the class of functions which can be approximated arbitrarily 
closely by a polynomial in powers of k in the domain bounded by L to every number 
E > 0 there exist a positive number N ( E )  and numbers a i (N)  such that: 

11 HI:' ( k ) + g ( k ) -  ai(N)cos(AiJk)l = O ( E ) .  (4.11) 

The summation over Il denotes the (finite) summation over all the singular points 
outside L. Equations (3.2a), (3.3) and (4.10) lead to: 

N 

11 j =  1 

= ~ { k ; '  exp[-$(a - ~ ) l k '  sin(arg k l ) ( ] } ,  if lkll + 00. (4.12) 

Because I#;;(kl) = O(k; ' )  if 12 labels a singularity k12 inside L, we derive: 

(4.13) 

If the contour L is transformed into a circle with infinite radius equations (4.9), (4.11), 
(4.12) and (4.13) lead to: 

X (e HI:' ( k s n )  + 1 a j (N)  cOS(AjJksn)) 1 = O(E ), ifR <a.  (4.14) 

Equations (4.4), (4.5) and (4.14) show that every function f ( R )  which is of bounded 
variation can be approximated arbitrarily closely by a suitable linear combination of 

/ 2  i 
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the set of functions (2.4) if 0 S R < a .  This proves the completeness of the set of 
functions (2.4). 

5. Discussion 

The problem which is considered in this paper essentially concerns the extension of 
classical Sturm-Liouville theory (Courant and Hilbert 1966) to the case where the 
boundary condition explicitly contains the eigenvalue. Though it seems that such 
problems do not occur very frequently in physics it has been pointed out in the 
introduction that they are rather rule than exception, i.e. these problems always occur 
in connection with fields satisfying a continuity condition across the boundary of two 
media, like the electromagnetic continuity conditions n x E and n x H continuous, 
and the quantum mechanical continuity conditions G and at++/an continuous across a 
boundary. 

After having shown the completeness of the eigenfunctions the question arises 
whether or not this set is overcomplete. The overcompleteness of this set of modes can 
be shown rather easily if the sphere and the surrounding media are not conducting 
(see the appendix). 

The same situation shows up in a similar problem, first formulated by Siegert 
(1939). Siegert considered the set of natural modes satisfying the radial Shrodinger 
equation and a continuity condition. The continuity condition arises from the 
requirement of continuity of the logarithmic derivative of the wavefunction across the 
boundary of the range of the potential, which is supposed to be delimited by a sphere 
with radius a .  

This set of natural modes can also be shown to be overcomplete (Hoenders 1978). I 
is also possible to show, using the same kind of analysis to that which has bee I 

developed in the appendix, that the set of natural modes arising in connection with tha 
problem of Morse and Feshbach (see the introduction), is overcomplete. 

In view of all these examples we conjecture that the natural modes occurring in 
electromagnetic theory, as defined by Wolf and Pattanayak (1 976) and Agarwal 
(1973), or arising in other fields of physics, are overcomplete. 

We shall give a discussion concerning the physical consequences of the overcom- 
pleteness of the set of natural modes analysed in this paper and conclude that it is 
highly probable that for physical fields overcompleteness does not exist at all. 

Overcompleteness means that we can dispose of a certain number of modes, or to 
speak in a colloquial way, 'nature wastes modes'. However, the field vectors of the 
electromagnetic field defined by equations ( 2 . 1 ~ )  to (2.lf) are quantities with non- 
zero imaginary parts and cannot therefore represent physically existing fields. 

To elucidate the situation we will consider the modes of the radial magnetic field 
vector H,. By virtue of the relation (4.1) we consider equation (2.26) as an equation in 
the variable w .  Changing w into -w and taking the complex conjugate we infer that if 
w,, is a root of equation (2.4) - w l  is a root too. Recalling the dispersion relation 
E ~ W  + i u w  = k , we observe that if wSn changes into -U:, the wavenumber k,, 
changes into - k L  or +kT,,. If however exp(ik,,r -iw,,t) represents an outgoing wave, 
we have to take -k?,, because in that case exp(iw,*,t-ikT,r) represents an outgoing 
wave too. We will show that for a physically existing field a linear superposition of two 
modes of the radial magnetic field vector H,, corresponding to the wavenumbers kL, 
and k:, is indistinguishable from the contribution of just one mode. 

2 2 
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The proof of this statement follows immediately from equation ( 2 . 1 4  and 

Re[A ljr(kmr) exp(-iwl,,t) + Azjd-kZr) exp(iw8t)l 

= Re[Al + (-l)'At)jl(k1,,r) exp(-iwl,t)], 

if A I  and A 2  are two arbitrary complex numbers. 
We can therefore dispose of one half of the set of modes, for instance those modes 

for which Re(k,,)< 0. Relaying on the results obtained by Paley and Wiener (1934) 
for similar problems, in my opinion it seems highly probable that the set of modes with 
Re(k,,)> 0 is just complete. 

However, though this completeness problem is certainly interesting from a 
mathematical point of view there is no reason from the point of view of the physicist to 
investigate the completeness of the set of modes (2.4) with Re(k,,)SO. The full set of 
modes (2.4) is overcomplete and the physical problem does not lead to a condition like 
Re(k,,) smaller or larger than zero. It is therefore possible to expand the field into a 
series of natural modes, satisfying the continuity conditions of the field. Because this is 
possible, there is not much need for the physicist to investigate the completeness 
properties of subsets of the set (2.4). 
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Appendix 

By virtue of the relation (4.1) we consider equation (2.26) as an equation in the 
variable w .  Changing w into -w and taking the complex conjugate we infer that if U,,, 

is a root of equation (2.2b) then -U:,, is a root too. Recalling the dispersion relation 
(4.1) we observe that if us, changes to -U:, the wavenumber k,, changes to -k:, or 
+k$,. If however exp(ik,,r-iw,,t) represents an outgoing wave, we have to take -k:, 
because in that case exp(iw:,t - ik?,r) represents an outgoing wave too. 

The finite set of wavenumbers kl, with Re(kl,)>O and I = 1 , .  . . , L is arbitrarily 
chosen from the infinite set of wavenumbers {k,,,}. 

Let 

where 

b-k*  
k - b  1-1 b-kl,, 

L 

F,,,(b, k ) =  ($)m[*) n (l)], b f k,,,. 

The contours lkl= c,, n = 1 ,2 ,3 ,  . . . , tend to infinity if n +CO and pass between two 
consecutive poles of the integrand of equation (A.1). Equations (2.3) and (3.3) show 
that: 

n-m lim I(b,  n, R) = 0, R < U .  (-4.3) 
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The residue at the point k = b is immediately calculated and is equal to a"jn(bR)/abm 
if we are permitted to change differentiation and integration. It is for this reason that 
we introduced the function Fm(b, k ) ,  which was introduced into complex analysis by 
Filon (1906) for the case b = 0. (For an explanation of Filon's theory see Watson 
(1966) and Hoenders and Ferwerda (1974).) 

The exact calculation of the residue at k = b is performed with the Laurent 
expansion of the function 

k - k  Fm(b,k)  
F"'(b, k )  = n (>) 

I = I  k - k k  W , n )  

around the point k = b :  

m !  
F'"(b, k )  = +I cn(k - 6)". (k -b )"+ ' !  

Because the principal part of (A.5) only contains the power ( k  - b)-m-l  we obtain 

a" 
ab 

Res(l(b, n, R ) :  k = b ) = T  jn(bR).  

The theorem of residues and equation (A.6) yield: 

Recalling that if jn(klnR) is a natural mode then jn( -kER)  is a natural mode too, and 
using the relation jn(k:R)  = ( - l )n jn( -k$R) ,  equation (A.7) shows that each function 
of the set 

a" { p j n ( b R ) ;  m = O ,  1 , 2 , .  . . ] , b#k, , ,  O s R < a  (A.8) 

can be expanded into the reduced set of natural modes 

{ jn(ksnR);  s # I ,  1 = 1 , 2 , .  . . , L}.  (A.9) 

Therefore if the set of functions (A.8) can be shown to be complete in the interval 
O s  R s a  we have proved the overcompleteness of the set of functions (2.4). 
However, this set of functions is the set of coefficients of the Taylor series expansion at 
the point A = b of the function jn(AR): 

am 
(A.10) jn(AR)= 1 7 ( A  - b ) " ~  jn(bR).  

" 1  
" = Q  m . ab 

The series (A.10) converges uniformly for all values of R with 0 s R s a and shows 
that each function jn(AlnR) of the complete set { jn(AmR)},  where the numbers A I ,  are 
the roots of the transcendental equation jn(Aa)  = 0, can be approximated arbitrarily 
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closely and uniformly in the interval 0 S R 6 a by a suitable linear combination of 
functions (A.8). This result and (A.7) proves the overcompleteness of the natural 
modes. 
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